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Unsteady natural convection in tall side-heated cavities
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SUMMARY

A �nite-volume scheme is used to simulate super-critical natural convection �ow in a side-heated cavity
with height=width aspect ratio of eight. The �ow is unsteady with travelling waves circulating around
the cavity in the �ow direction. Results on a range of grids with QUICK and central di�erence advection
discretizations show that a very �ne grid is required to ensure a converged solution is obtained. A linear
parallel stability analysis has been carried out and it is shown that the basic wave structure of the �ow
is well predicted. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The domain, boundary conditions and governing equations used are those given in Christon
et al. [1]. A fractional step �nite-volume discretization of the Navier–Stokes plus temperature
equation on a non-staggered grid has been used, with the equations integrated in time using
a Crank–Nicolson discretization for the di�usive terms and Adams–Bashforth for the advec-
tive terms. At each time step the temperature and momentum equations are integrated once,
using the previous time-step pressure in the momentum equations, to obtain an intermediate
velocity �eld that may not be divergence free. A Poisson equation, with the divergence of the
intermediate velocity �eld as the source term, is then solved to obtain a pressure correction
which is used to project the intermediate velocity �eld onto a divergence free �eld, and to
update the pressure, completing one time step. The advective terms are discretized using either
QUICK third-order upwinding [2] or second-order central di�erencing, all other spatial terms
use second-order central di�erencing. The basic scheme has been previously used for the sim-
ulation of natural convection �ow [3, 4], as well as other buoyancy-dominated �ows [5]. The
discretized temperature and momentum equations are inverted using four sweeps of an ADI
scheme, while the Poisson pressure correction equation is inverted using a restarted GMRES
method. The solution of the pressure correction equation is halted when the integral over the
domain of the absolute divergence of the corrected velocity �eld is less than 1:0×10−6.
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Table I. Grid details.

Grid �x;�y at wall Stretching �t CPUs=time step

G1 35×75 0.02, 0.04 1.07 0.01 0.06
G2 69×155 0.01, 0.02 1.035 0.005 0.33
G3 141×335 0.005, 0.01 1.0175 0.0025 3.5
G4 293×669 0.0025, 0.005 1.00875 0.00125 13.4

Results have been obtained on a range of grids and it is shown that both QUICK and
central di�erence advection schemes converge on a �ne enough grid. Additionally, a linear
parallel stability analysis has been carried out using the numerical solution as a base �ow and
it is shown that the basic wave-like features of the �ow are well predicted.

2. RESULTS

Results have been obtained for Ra=3:4×105 and Pr=0:71 on four grids. Details of the grids,
stretching, time step and CPU seconds per time step are shown in Table I. All cases were
run on a Compaq Alphaserver DS10 with 466 MHz alpha 21264 processor and 1 Gbyte of
memory. For each of the grids the smallest mesh is located adjacent to the solid boundaries,
and the mesh is stretched away from the boundary with the stretching shown. The stretching
factor is then progressively reduced giving a uniform grid in the interior of the domain. Finer
grids are obtained by successively reducing the boundary mesh size and stretching factor by
half.
The �ow is initialized with a zero velocity and temperature. At time t=0 the left and right

walls are impulsively heated and cooled to temperatures of 0.5 and −0:5, respectively, and
the �ow allowed to develop. It was found that by time t=500 the start-up transients have
decayed and the time series shows an oscillatory signal similar to that observed in Le’Quere
and DeRoquefort [6]. To obtain the compulsory data for each of the grids the code was run
initially to a non-dimensional time of t=1000. The data were then collected over 65536 time
steps.
Figure 1 contains results obtained with the QUICK scheme for the G2, G3 and G4 grids.

The G2 grid shows only a steady result, with no oscillation, while the G3 and G4 grids both
produce a sinusoidal oscillation with nearly identical period, but with the G4 result having the
largest amplitude. Figure 2 contains the equivalent results obtained with the central di�erence
scheme. For the central di�erence scheme all the grids produce a sinusoidal signal, and all
grid results are shown. There is a considerable variation in both period and amplitude between
the G1 and G2 grid results; however, the G2, G3 and G4 results all show basically the same
behaviour, with the G4 result having the largest amplitude. Figures 3 and 4 show a direct
comparison of the QUICK and central di�erencing results on the G3 and G4 grids. Some
variation is seen on the G3 grid, with the QUICK scheme giving a smaller amplitude than
the central scheme. On the G4 grid both schemes give identical results.
The compulsory data for the X -velocity and temperature average, amplitude and period at

point 1, together with the pressure di�erence at points 1 and 4, and the Nusselt number on the
heated wall, are shown in Table II, showing both the grid convergence and the most accurate
solution obtained. Only the results obtained with the central di�erence advection scheme are
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Figure 1. Temperature time series obtained at point 1 with the QUICK scheme.
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Figure 2. Temperature time series obtained at point 1 with the central scheme.
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Figure 3. Temperature time series at point 1 with QUICK and central on G3.

820 825 830 835 840

Time

0.24

0.25

0.26

0.27

0.28

0.29

T
em

pe
ra

tu
re

QUICK
Central

Figure 4. Temperature time series at point 1 with QUICK and central on G4.
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Table II. Data obtained with the central di�erence scheme on the G2, G3 and G4 grids.

G2: 69×155 G3: 141×355 G4: 293×699
Time duration: 328 Time duration: 164 Time duration: 82
Steps per period: 340 Steps per period: 680 Steps per period: 1360

Quantity Average Amplitude Average Amplitude Average Amplitude

X -velocity 5.499d-2 4.820d-2 5.608d-2 5.230d-2 5.638d-2 5.382d-2
temperature 2.656d-l 3.784d-2 2.656d-l 4.082d-2 2.656d-l 4.198d-2
�P14 1.890d-3 1.806d-2 1.877d-3 1.951d-2 1.855d-3 2.006d-2
Nusselt (x=0) −4:589 6.470d-3 −4:582 6.794d-3 −4:580 6.900d-3
Period 3.4444 3.4191 3.4125
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Figure 5. Temperature time series at x=0:09.

shown, although it is clear that the QUICK scheme will give very similar values on the
G4 grid.

2.1. Stability

The oscillatory signal seen in the temperature time series, shown above, is a result of waves
that circulate around the cavity travelling in the �ow direction [6]. The waves travel up the
heated wall boundary layer, across the horizontal �ow region below the upper boundary, down
the cooled wall boundary layer, returning to the lower part of the heated wall boundary layer
via the horizontal �ow region above the bottom boundary. The behaviour of the vertically
travelling waves in the vertical boundary layer is shown in Figure 5, where temperature time
series obtained at a range of vertical locations within the boundary layer, adjacent to the
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Figure 6. Amplitude of temperature time series at x=0:09.

Table III. Wave parameters from simulation at y=4.

Ampli�cation (y=4) 0.43
Phase velocity (y=4) 0.6
Maximum �uid velocity (y=4) 0.78
Frequency 0.293
Critical y ∼2:8

heated wall, are shown. The wave structure is seen at all heights in the boundary layer;
however, it is also apparent that in the lower part of the boundary layer the waves initially
decay, with the smallest amplitude seen at the y=3:2 location. Above this location the waves
amplify, with the largest amplitude seen at the y=6:4 location, the highest location shown.
The travelling waves originating at the base of the heated wall boundary layer are therefore
seen to initially decay as they travel up the boundary layer, reaching a minimum amplitude at
a critical height, then amplifying as they continue to travel above this height. This behaviour is
shown in Figure 6, where the amplitude of the travelling waves is plotted against height in the
boundary layer. The initial decay and subsequent growth of the waves is clearly seen, while
additionally it is observed that the amplitude itself has a wave structure in the lower region
of the boundary layer, and the amplitude drops o� rapidly above a height of approximately
y=7:0. Based on the amplitude variation the stability character of the thermal boundary layer
may be parameterized in terms of the growth rate of the waves, the phase velocity and the
frequency. These quantities at location y=4, half the cavity height, are shown in Table III,
together with the maximum �uid velocity at this location, which shows that the travelling

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:1009–1018



UNSTEADY NATURAL CONVECTION IN TALL SIDE-HEATED CAVITIES 1015

waves velocity is slightly less than that of the �uid. Also shown is the critical y location at
which the travelling waves change from decay to growth.
It is of interest to determine if the stability character of the boundary layer, as parameterized

by the quantities given above, is predicted by a linear parallel stability analysis, providing
insight into the basic generation mechanisms associated with the unsteady �ow. A stability
analysis may be carried out by solving the eigenvalue equations obtained by representing the
�ow in terms of a base �ow plus a perturbation, where the perturbation is of the form

 =�( (x)ei�yei!t)

�=�(�(x)ei�yei!t)

for the stream function  and temperature �. In this case � is complex with the imaginary
component the ampli�cation, and ! is the real temporal wave number, which is related to the
frequency by

f=
!
2�

Substituting these quantities into the governing equations and eliminating non-parallel and
non-linear terms give a set of eigenvalue equations in terms of the base �ow. The base �ow
quantities are obtained directly from the numerical simulation and the resulting eigenvalue
problem is solved at each vertical location in the cavity, providing a relation between the
frequency, ampli�cation and phase velocity at each height [4].
Ampli�cation contours on an !; y graph are shown in Figure 7, with the thick contour

representing the zero ampli�cation curve. Solutions with !; y values outside the neutral curve
are stable, while those inside it are unstable. It is clear that for small y all ! values are stable;
however at y=1:7 a single ! initially transits the neutral curve, becoming unstable, with a
value of approximately !=2:5. At higher y locations a range of wave numbers are unstable.
At y=4:0 the unstable range is 1:0¡!¡6:0, with the maximum ampli�cation occurring at
approximately !=4:0.
Figure 8 shows contours of the phase velocity on an !; y graph, where it is seen that the

boundary layer supports vertically travelling waves with a range of velocities up to slightly
greater than 0.55. The stability analysis therefore shows that the thermal boundary layer will
support vertically travelling waves with, above a critical height, a band of wave numbers
unstable and therefore corresponding to waves that increase in amplitude as they travel. The
ampli�cation and phase velocity for the frequency f=0:293 predicted by the stability analysis
at the half cavity height may be obtained from the ampli�cation and phase velocity plots and
compared to that obtained in the simulation, shown in Table III. The frequency f=0:293
corresponds to a wave number !=1:84. The stability and simulation results are compared in
Table IV, where it is seen that they are in good agreement, demonstrating that the travelling
wave observed at the half-cavity height location is a linear wave resulting from the instability
of the locally parallel base �ow.
The critical height for the transition to unstable �ow obtained from the stability analysis

is also compared to that obtained from the simulation in Table IV. The agreement is clearly
not as good as that obtained for the quantities at the half-height location.
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Figure 7. Ampli�cation contours.
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Figure 8. Phase speed contours.
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Table IV. Wave parameters from simulation and stability analysis.

Simulation Stability (f=0:293)

Ampli�cation (y=4) 0.43 0.43
Phase velocity (y=4) 0.60 0.56
Critical y ∼2:8 1.7

3. DISCUSSION AND CONCLUSIONS

The fractional step projection method used for the solution of the unsteady Navier–Stokes
equations is able to produce oscillatory travelling wave solutions in the vertical natural con-
vection cavity �ow for the con�guration and control parameters speci�ed. Solutions have been
obtained for both QUICK and central di�erence discretizations of the advective terms, and it
is clear that both schemes converge to the same solution on the �nest grid used. However,
considerable variation is seen on the coarser grids. On the G1 and G2 grids the QUICK
scheme showed no oscillations, and it is clear that the third-order dissipation inherent in this
scheme is damping the instability that leads to the travelling waves. The central scheme,
however, showed oscillatory behaviour on all grids, although the solution on G1 is clearly
very inaccurate with convergent behaviour only seen on the G2, G3 and G4 grids. Compar-
ing the QUICK and central schemes on G3 it is seen that the central scheme predicts the
amplitude more accurately, but the QUICK scheme predicts the period more accurately. The
more accurate prediction of the period for the QUICK scheme is a result of that scheme
having a higher order dispersion error than that of the central scheme. Finally, it is clear that
using an overall second-order scheme of this type it is not possible to obtain signi�cantly
more accurate results. The G4 grid result took 135 days of wall clock time to run on the
Compaq DS10. A further grid re�nement to a G5 grid would require 3 years of wall clock
time, which is not feasible. Any additional improvement in accuracy would require a very
substantial improvement in computer performance, or the use of a higher order scheme.
It has been hypothesized that the unsteady nature of this �ow is a result of a bifurcation

that is associated with the stability character of the thermal boundary layers. To test this
hypothesis a linear parallel stability analysis was carried out using the numerical simulation
as the base �ow. The stability analysis showed that the thermal boundary layers support
travelling wave solutions, with the lower part of the boundary layer stable and the upper part
unstable. Thus on the heated plate boundary layer the �ow is convectively unstable above
y=1:7, and applying a perturbation within the unstable wave number band above this height
will lead to travelling waves amplifying as they travel. The stability analysis provided a good
prediction of the observed behaviour of the travelling wave at the half-height location in the
numerical simulation; however, it underpredicted the location of the critical point at which the
�ow becomes unstable. It is likely that the underlying assumption of parallel �ow is incorrect
in the regions of the boundary layer away from the half-height, and this led to the poorer
prediction of the critical height.
The stability analysis shows that the boundary layers, above the critical height on the heated

wall boundary layer and below the conjugate height on the cooled wall boundary layer, are
unstable to a range of wave numbers. However, the simulation clearly shows only a single
wave number component. The component observed is that which is unstable in a complete
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circuit of the cavity. Even though other wave numbers are unstable in the upper part of the
boundary layer, evidently the decay that occurs in the lower part of the boundary layer, in the
non-parallel regions adjacent to the upper and lower boundaries, and in the horizontal �ow
regions, is such that in a single circuit these other wave numbers are stable. If the stability
of the wave in a single circuit were entirely governed by that of the boundary layer, and
assuming that the linear parallel stability analysis provided a good prediction of the stability
properties over the entire height of the boundary layer, the critical wave number observed in
the simulation could be predicted by obtaining the wave number with the largest ampli�cation
when integrated in the y direction in Figure 7. Inspection of Figure 7 shows that this will be
approximately !=3:0, which gives a frequency of 0.47 considerably greater than that observed
in the simulation. It is therefore clear that the non-parallel boundary layer regions and the
horizontal �ow regions must contribute more decay to the higher wave number components
than is predicted by the linear parallel analysis carried out here, and thus an accurate prediction
of the bifurcation frequency would require those regions and e�ects to be accounted for.
However, despite the inability of the linear parallel stability analysis to accurately predict
the bifurcation frequency, it does clearly demonstrate that the basic features of the travelling
waves are determined by the stability of the thermal boundary layers.
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